3.20.64 \(\int \frac {(d+e x)^6}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\) [1964]

3.20.64.1 Optimal result
3.20.64.2 Mathematica [A] (verified)
3.20.64.3 Rubi [A] (verified)
3.20.64.4 Maple [B] (verified)
3.20.64.5 Fricas [A] (verification not implemented)
3.20.64.6 Sympy [F]
3.20.64.7 Maxima [F(-2)]
3.20.64.8 Giac [F(-2)]
3.20.64.9 Mupad [F(-1)]

3.20.64.1 Optimal result

Integrand size = 37, antiderivative size = 294 \[ \int \frac {(d+e x)^6}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 (d+e x)^5}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {14 e (d+e x)^3}{3 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {35 e^2 \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^4 d^4}+\frac {35 e^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 c^3 d^3}+\frac {35 e^{3/2} \left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^{9/2} d^{9/2}} \]

output
-2/3*(e*x+d)^5/c/d/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+35/8*e^(3/2)*(- 
a*e^2+c*d^2)^2*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2) 
/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^(9/2)/d^(9/2)-14/3*e*(e*x+d)^3 
/c^2/d^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+35/4*e^2*(-a*e^2+c*d^2)*( 
a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^4/d^4+35/6*e^2*(e*x+d)*(a*d*e+(a* 
e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^3/d^3
 
3.20.64.2 Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 230, normalized size of antiderivative = 0.78 \[ \int \frac {(d+e x)^6}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (-\frac {\sqrt {c} \sqrt {d} \left (105 a^3 e^6-35 a^2 c d e^4 (5 d-4 e x)+7 a c^2 d^2 e^2 \left (8 d^2-34 d e x+3 e^2 x^2\right )+c^3 d^3 \left (8 d^3+80 d^2 e x-39 d e^2 x^2-6 e^3 x^3\right )\right )}{(a e+c d x)^2}+\frac {105 e^{3/2} \left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{12 c^{9/2} d^{9/2}} \]

input
Integrate[(d + e*x)^6/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]
 
output
(Sqrt[(a*e + c*d*x)*(d + e*x)]*(-((Sqrt[c]*Sqrt[d]*(105*a^3*e^6 - 35*a^2*c 
*d*e^4*(5*d - 4*e*x) + 7*a*c^2*d^2*e^2*(8*d^2 - 34*d*e*x + 3*e^2*x^2) + c^ 
3*d^3*(8*d^3 + 80*d^2*e*x - 39*d*e^2*x^2 - 6*e^3*x^3)))/(a*e + c*d*x)^2) + 
 (105*e^(3/2)*(c*d^2 - a*e^2)^2*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(S 
qrt[e]*Sqrt[a*e + c*d*x])])/(Sqrt[a*e + c*d*x]*Sqrt[d + e*x])))/(12*c^(9/2 
)*d^(9/2))
 
3.20.64.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 315, normalized size of antiderivative = 1.07, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {1133, 1124, 2192, 27, 1160, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^6}{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1133

\(\displaystyle \frac {7 e \int \frac {(d+e x)^4}{\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/2}}dx}{3 c d}-\frac {2 (d+e x)^5}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

\(\Big \downarrow \) 1124

\(\displaystyle \frac {7 e \left (\frac {\int \frac {c^2 d^2 x^2 e^4+c d \left (3 c d^2-a e^2\right ) x e^3+\left (3 c^2 d^4-3 a c e^2 d^2+a^2 e^4\right ) e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c^3 d^3 e}-\frac {2 (d+e x) \left (c d^2-a e^2\right )^2}{c^3 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{3 c d}-\frac {2 (d+e x)^5}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2192

\(\displaystyle \frac {7 e \left (\frac {\frac {\int \frac {c d e^3 \left (2 \left (3 c d^2-2 a e^2\right ) \left (2 c d^2-a e^2\right )+c d e \left (9 c d^2-7 a e^2\right ) x\right )}{2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 c d e}+\frac {1}{2} c d e^3 x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^3 d^3 e}-\frac {2 (d+e x) \left (c d^2-a e^2\right )^2}{c^3 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{3 c d}-\frac {2 (d+e x)^5}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 e \left (\frac {\frac {1}{4} e^2 \int \frac {2 \left (3 c d^2-2 a e^2\right ) \left (2 c d^2-a e^2\right )+c d e \left (9 c d^2-7 a e^2\right ) x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx+\frac {1}{2} c d e^3 x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^3 d^3 e}-\frac {2 (d+e x) \left (c d^2-a e^2\right )^2}{c^3 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{3 c d}-\frac {2 (d+e x)^5}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

\(\Big \downarrow \) 1160

\(\displaystyle \frac {7 e \left (\frac {\frac {1}{4} e^2 \left (\frac {15}{2} \left (c d^2-a e^2\right )^2 \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx+\left (9 c d^2-7 a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}\right )+\frac {1}{2} c d e^3 x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^3 d^3 e}-\frac {2 (d+e x) \left (c d^2-a e^2\right )^2}{c^3 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{3 c d}-\frac {2 (d+e x)^5}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {7 e \left (\frac {\frac {1}{4} e^2 \left (15 \left (c d^2-a e^2\right )^2 \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}+\left (9 c d^2-7 a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}\right )+\frac {1}{2} c d e^3 x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^3 d^3 e}-\frac {2 (d+e x) \left (c d^2-a e^2\right )^2}{c^3 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{3 c d}-\frac {2 (d+e x)^5}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {7 e \left (\frac {\frac {1}{4} e^2 \left (\frac {15 \left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {c} \sqrt {d} \sqrt {e}}+\left (9 c d^2-7 a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}\right )+\frac {1}{2} c d e^3 x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^3 d^3 e}-\frac {2 (d+e x) \left (c d^2-a e^2\right )^2}{c^3 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{3 c d}-\frac {2 (d+e x)^5}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

input
Int[(d + e*x)^6/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]
 
output
(-2*(d + e*x)^5)/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + ( 
7*e*((-2*(c*d^2 - a*e^2)^2*(d + e*x))/(c^3*d^3*Sqrt[a*d*e + (c*d^2 + a*e^2 
)*x + c*d*e*x^2]) + ((c*d*e^3*x*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2 
])/2 + (e^2*((9*c*d^2 - 7*a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^ 
2] + (15*(c*d^2 - a*e^2)^2*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]* 
Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[c]* 
Sqrt[d]*Sqrt[e])))/4)/(c^3*d^3*e)))/(3*c*d)
 

3.20.64.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1124
Int[((d_.) + (e_.)*(x_))^(m_.)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x 
_Symbol] :> Simp[-2*e*(2*c*d - b*e)^(m - 2)*((d + e*x)/(c^(m - 1)*Sqrt[a + 
b*x + c*x^2])), x] + Simp[e^2/c^(m - 1)   Int[(1/Sqrt[a + b*x + c*x^2])*Exp 
andToSum[((2*c*d - b*e)^(m - 1) - c^(m - 1)*(d + e*x)^(m - 1))/(c*d - b*e - 
 c*e*x), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e 
^2, 0] && IGtQ[m, 0]
 

rule 1133
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[e*(d + e*x)^(m - 1)*((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), 
 x] - Simp[e^2*((m + p)/(c*(p + 1)))   Int[(d + e*x)^(m - 2)*(a + b*x + c*x 
^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e 
^2, 0] && LtQ[p, -1] && GtQ[m, 1] && IntegerQ[2*p]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 2192
Int[(Pq_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = 
Expon[Pq, x], e = Coeff[Pq, x, Expon[Pq, x]]}, Simp[e*x^(q - 1)*((a + b*x + 
 c*x^2)^(p + 1)/(c*(q + 2*p + 1))), x] + Simp[1/(c*(q + 2*p + 1))   Int[(a 
+ b*x + c*x^2)^p*ExpandToSum[c*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b 
*e*(q + p)*x^(q - 1) - c*e*(q + 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, c 
, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]
 
3.20.64.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(7419\) vs. \(2(260)=520\).

Time = 3.83 (sec) , antiderivative size = 7420, normalized size of antiderivative = 25.24

method result size
default \(\text {Expression too large to display}\) \(7420\)

input
int((e*x+d)^6/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x,method=_RETURNVERB 
OSE)
 
output
result too large to display
 
3.20.64.5 Fricas [A] (verification not implemented)

Time = 1.80 (sec) , antiderivative size = 833, normalized size of antiderivative = 2.83 \[ \int \frac {(d+e x)^6}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\left [\frac {105 \, {\left (a^{2} c^{2} d^{4} e^{3} - 2 \, a^{3} c d^{2} e^{5} + a^{4} e^{7} + {\left (c^{4} d^{6} e - 2 \, a c^{3} d^{4} e^{3} + a^{2} c^{2} d^{2} e^{5}\right )} x^{2} + 2 \, {\left (a c^{3} d^{5} e^{2} - 2 \, a^{2} c^{2} d^{3} e^{4} + a^{3} c d e^{6}\right )} x\right )} \sqrt {\frac {e}{c d}} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x + 4 \, {\left (2 \, c^{2} d^{2} e x + c^{2} d^{3} + a c d e^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {\frac {e}{c d}}\right ) + 4 \, {\left (6 \, c^{3} d^{3} e^{3} x^{3} - 8 \, c^{3} d^{6} - 56 \, a c^{2} d^{4} e^{2} + 175 \, a^{2} c d^{2} e^{4} - 105 \, a^{3} e^{6} + 3 \, {\left (13 \, c^{3} d^{4} e^{2} - 7 \, a c^{2} d^{2} e^{4}\right )} x^{2} - 2 \, {\left (40 \, c^{3} d^{5} e - 119 \, a c^{2} d^{3} e^{3} + 70 \, a^{2} c d e^{5}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{48 \, {\left (c^{6} d^{6} x^{2} + 2 \, a c^{5} d^{5} e x + a^{2} c^{4} d^{4} e^{2}\right )}}, -\frac {105 \, {\left (a^{2} c^{2} d^{4} e^{3} - 2 \, a^{3} c d^{2} e^{5} + a^{4} e^{7} + {\left (c^{4} d^{6} e - 2 \, a c^{3} d^{4} e^{3} + a^{2} c^{2} d^{2} e^{5}\right )} x^{2} + 2 \, {\left (a c^{3} d^{5} e^{2} - 2 \, a^{2} c^{2} d^{3} e^{4} + a^{3} c d e^{6}\right )} x\right )} \sqrt {-\frac {e}{c d}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-\frac {e}{c d}}}{2 \, {\left (c d e^{2} x^{2} + a d e^{2} + {\left (c d^{2} e + a e^{3}\right )} x\right )}}\right ) - 2 \, {\left (6 \, c^{3} d^{3} e^{3} x^{3} - 8 \, c^{3} d^{6} - 56 \, a c^{2} d^{4} e^{2} + 175 \, a^{2} c d^{2} e^{4} - 105 \, a^{3} e^{6} + 3 \, {\left (13 \, c^{3} d^{4} e^{2} - 7 \, a c^{2} d^{2} e^{4}\right )} x^{2} - 2 \, {\left (40 \, c^{3} d^{5} e - 119 \, a c^{2} d^{3} e^{3} + 70 \, a^{2} c d e^{5}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{24 \, {\left (c^{6} d^{6} x^{2} + 2 \, a c^{5} d^{5} e x + a^{2} c^{4} d^{4} e^{2}\right )}}\right ] \]

input
integrate((e*x+d)^6/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm=" 
fricas")
 
output
[1/48*(105*(a^2*c^2*d^4*e^3 - 2*a^3*c*d^2*e^5 + a^4*e^7 + (c^4*d^6*e - 2*a 
*c^3*d^4*e^3 + a^2*c^2*d^2*e^5)*x^2 + 2*(a*c^3*d^5*e^2 - 2*a^2*c^2*d^3*e^4 
 + a^3*c*d*e^6)*x)*sqrt(e/(c*d))*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d 
^2*e^2 + a^2*e^4 + 8*(c^2*d^3*e + a*c*d*e^3)*x + 4*(2*c^2*d^2*e*x + c^2*d^ 
3 + a*c*d*e^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e/(c*d))) 
+ 4*(6*c^3*d^3*e^3*x^3 - 8*c^3*d^6 - 56*a*c^2*d^4*e^2 + 175*a^2*c*d^2*e^4 
- 105*a^3*e^6 + 3*(13*c^3*d^4*e^2 - 7*a*c^2*d^2*e^4)*x^2 - 2*(40*c^3*d^5*e 
 - 119*a*c^2*d^3*e^3 + 70*a^2*c*d*e^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 
+ a*e^2)*x))/(c^6*d^6*x^2 + 2*a*c^5*d^5*e*x + a^2*c^4*d^4*e^2), -1/24*(105 
*(a^2*c^2*d^4*e^3 - 2*a^3*c*d^2*e^5 + a^4*e^7 + (c^4*d^6*e - 2*a*c^3*d^4*e 
^3 + a^2*c^2*d^2*e^5)*x^2 + 2*(a*c^3*d^5*e^2 - 2*a^2*c^2*d^3*e^4 + a^3*c*d 
*e^6)*x)*sqrt(-e/(c*d))*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2 
)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-e/(c*d))/(c*d*e^2*x^2 + a*d*e^2 + ( 
c*d^2*e + a*e^3)*x)) - 2*(6*c^3*d^3*e^3*x^3 - 8*c^3*d^6 - 56*a*c^2*d^4*e^2 
 + 175*a^2*c*d^2*e^4 - 105*a^3*e^6 + 3*(13*c^3*d^4*e^2 - 7*a*c^2*d^2*e^4)* 
x^2 - 2*(40*c^3*d^5*e - 119*a*c^2*d^3*e^3 + 70*a^2*c*d*e^5)*x)*sqrt(c*d*e* 
x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^6*d^6*x^2 + 2*a*c^5*d^5*e*x + a^2*c^4 
*d^4*e^2)]
 
3.20.64.6 Sympy [F]

\[ \int \frac {(d+e x)^6}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\int \frac {\left (d + e x\right )^{6}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate((e*x+d)**6/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)
 
output
Integral((d + e*x)**6/((d + e*x)*(a*e + c*d*x))**(5/2), x)
 
3.20.64.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^6}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*x+d)^6/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm=" 
maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?` f 
or more de
 
3.20.64.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^6}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((e*x+d)^6/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm=" 
giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%{[%%%{8,[6,6,8]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[4,4] 
%%%}+%%%{
 
3.20.64.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^6}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\int \frac {{\left (d+e\,x\right )}^6}{{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}} \,d x \]

input
int((d + e*x)^6/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2),x)
 
output
int((d + e*x)^6/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2), x)